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Wigner—Eckart theorem for the quantum group U (n)

A U Klimyk
Institute for Theoretical Physics, Kiev 130, Ukraine

Received 28 October 1991

Abstract. Tensor operators transforming under finite dimensional irreducible representa-
tions of the quantum group U () are defined. Using them tensor operators transforming
under representations of the quantum algebra U, {x( n)) are introduced. The Wigner-Eckart
theorem on matrix elements of tensor operators defined is derived.

1. Introduction

The Wmner-Fclmrf thearem ic ane of the most fundamental mathematical resulis in

the theory of symmetries. In the last decade new mathematical objects of the theory
of symmetries appeared. They are quantum groups and algebras. In order to apply
representations of quantum groups and algebras in physics we have to develop adequate
mathematica) apparatus. In particular, it is necessary to have an appropriate definition
of tensor operators transforming under representations of quantum groups and to
prove the g-analogue of the Wigner-Eckart theorem.

Tensor operators for quantum groups and the corresponding Wigner-Eckart
theorem are considered by Biedenharn and Tarlini (1990) (see also Klimyk and Smirnov
1990, Nomura 1990a, 1990b, Rittenberg and Scheunert 1991). In their definition of
tensor operators, Biedenharn and Tarlini (1990) demand that action of generators E,
of a quantum algebra U,(g) upon tensor operators {t,} is compatible with comultiplica-
tion in U,(g). This requirement does not give a complete definition of a tensor operator
as it is in the case of classical compact Lie groups. Besides, the definition by Biedenharn
and Tarlini (1990) is only for tensor operators transforming under representations of
quantum algebras U,(g) (g-deformed universal enveloping algebras). Although
Biedenharn and Tarlini call quantum algebras U,(g) quantum groups, we differentiate
between two notations: a quantum algebra U, (g) and the algebra of functions A(G,)
on a quantum group G,,. These mathematical objects are dual. Nevertheless, definitions
of tensor operators for U,(g) and for A(G,} are different. Of course, since U,(g) and
A(G,) are dual, then these definitions are connected.

In this paper we explicitly define tensor operators transforming under a representa-
tion of the quantum group U (n) (which is the g-analogue of the unitary group U(n)),
that is under a corepresentation of the Hopf algebra A(U,(n)), and prove the Wigner-

Eckart theorem for these tensor operators (these results are absent in Biedenharn and
Tarlini 19001, Thegs tenzar aneratars are defined in the same way as in the case of
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tensor opetators transformmg under representations of classical compact Lie groups.
The duality between the Hopf algebra A(U,(n)) and the Hopf algebra U,(u(n))
(g-deformation of the universal enveloping algebra of the Lie algebra of the group
U{n)) allows us to go over to definition of tensor operators transforming under
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representations of the algebra U (u(n)) and to obtain the Wigner-Eckart theorem for
them. In this way we receive the explicit formula of action of the generators E, of the
algebra U,(u(n)) upon tensor operators. Thus, for the case of the quantum algebra
U,(u(n)) we derive the explicit expression for the Ieft-hand side of formula (9) of the
paper by Biedenharn and Tarlini (1990), such that {t,} satisfies the conditions of the
main theorem of that paper.

2. The quantum algebras U,(gl(n, C)) and L, (u(n))

Let L be the lattice $27_, Ze, in R", where Z is the set of all integers and ¢ are the
unit vectors. With the help of the formula {e;, ¢} =5, a scalar product is introduced
in L. The quantum algebra U,(gl(n, C)) is generated by the elements ¢°, a € L, e, fi,

1 e whinh Aahav tha ralatinme
A7T= R TSNy WLLWIL VUL Y LY IWRALIVEID

g"=1 q°q"=q"*" abcL (1)
geg " =g ve, (2)
qfq " =q BT, ael 1sk<n (3)
e —e —e. te
e, — e =%—i 8y (4)
efe;—(qg+q ege,+eei=0 li-jl=1 (5)
fifi—(a+q ) fffi+fifi=0 li-jl=1 (6)
€€, = €€ fifi=ff li—jl=1. (7)

The structure of a Hopf algebra is defined in U,(gl(n, C)). Namely, the coproduct 4,
the co-unit £ and the antipode § are given by the formulae {Jimbo 1986b})

Ag®)=q"®4q" aclL (8)
Ale) = e®@q % V24 glam a7 g, (9)
Afi) = fi® g~ 924 glamta2Q £ (10)
e(g®)=1 elex)=e(fi)=0 (11)
S(¢")=q"" S(e)=—q'e S(f)=-qf. (12)

By means of *-operations (which are antilinear antiautomorphisms) real forms of
U,(gl(n, C)) can be separated. The compact quantum algebra U,(u(n)) is defined with
the help of the *-operation

(g°Y=q" Y=e e¥=fi (13)

in U,(gl(n, C)). It is a *-Hopf aigebra.

Finite dimensional irreducible representations T of the algebra U,{gl(n, C)) [and
of the algebra U,(u(n))] are in one-to-one correspondence with such representations
of the classical unitary group U(n) (Jimbo 1986a} and are given in the Gel’fand-Tsetlin
basis {{M)} by the Gel'fand-Tsetlin formulae in which all factorial m! are replaced
by the corresponding g-factorials {m]! defined by the formula

k_ &
[m]t={m][m-1]...[1] where [k]=‘2_:_1.
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In particular, the operators E; = T(¢;), F,= T(f}), T(g%)=q" act upon the basis
vectors | M) by the formulae

EIM)= T MM (149
FIM)= & A(MIM;" (13)
HM) = (z my— m,-,,-_.)lM> (16)

where Mf" is the Gel'fand-Tsetlin pattern obtained from M by replacing m,; by
my+1and A, (M) are coefficients which are explicitly given by Jimbo (1986a).

The tensor product of two irreducible finite dimensional representations T(m,)
and T(m,) of the algebra U,(u(n)) with highest weights m, and m, decomposes into
the direct sum of irreducible representations:

T(m)® T(my) = L T(m, r) (17

where r labels multiple irreducible representations T(m)} and T(m, r)= T(m) for all
values of r. If | N), |K), | M} are the Gel'fand-Tsetlin bases of the carrier spaces of the
irreducible representations T(m,), T(m,;)}, T(m) respectively, then according to
decomposition (17) the Clebsch-Gordan coefficients of this tensor product are
defined as

M), = T Cicia INYBIK). (18)
As in the classical case, we have the orthogonality relations
Z szni;?c:};n@ﬁ‘ = amm'aMM’arr‘ (19)
N.K
Y O Catkine = Snnix (20)
m, M. r

where the bar denotes complex conjugation.

3. The algebra of functions on the quantum group U,(n)

In the basis {| M)} the irreducible representation T(m) of the quantum algebra U (u(n})
is given by the matrix with matrix elements ¢35 depending on elements a € U,(u(n)).
As in the case of the quantum group SU,(2) (Groza et al 1990), formulae {8)-(10)
mean that

Nt TR URRE NN

As in the classical case, we have the relations

mmm mmm m _ m; _m
2 Cnknr Créur = 1tnglcs (21)
rom ML
. ) m m,m m, m,m m, m. ’
Z CN:Ki\ftr CR’SLS ‘N}atxzs"tML . (22)
N KRS

where ;! are Clebsch-Gordan coefficients of the quantum algebra U, (u{(n)).
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For the irreducible representation T, of the algebra U,(u(n)) with highest weight
(1,0,...,0) (the vector representation} elements of the Gel'fand-Tsetlin basis are
labelied by the Gel’fand-Tsetlin patterns with rows of the types (1,0,...,0) and
(0,...,0). We denote by v; the element of this basis whose pattern consists of j rows
of the type (1,0, ...,0). Then the elements v, i=1,2,..., n, form a basis of the carrier
space of the representation T,. Let t;, 1<, j<n, be the matrix elements of this
represeqtation with respect to the basis v, i=1, 2, ..., n. Using relations (21) and (22)
for my=m;=(1,0,...,0) and explicit expressions for Clebsch-Gordan coefficients of
the tensor product T,® T, (Pasquier 1988) in the same way as in the paper by Groza
et al (1990) we derive that #;, 1< i, j < n, satisfy the relations "

tadp = Qlpcty tuly = gl i<j (23)
tulie = Yidy P<j k<l (24)
tackii = Qlat = tatac — § tuly i<j k<l (25)
t; det;' =det;'t; det, det;' =det;" det, =1 (26)

which are usually derived with the help of universal R matrix. Here det, is the
g-determinant defined by the formula

.. - s \g(;). .
Cle[q = 2-4 L_qJ rl.s{l) e v I[n,.t(rl)
€S

TEJy,

where S, is the permutation group of the set 1,2,...,n and o(s) is the number of
inversions involved in s. We generate by the elements 1, 1<i, j<n, det;’ 6béyi:pg
relations (23)-(26) the associative algebra. The structure of a Hopf algebra is introdiiced
into this algebra (Noumi et al 1990, Parshall and Wang 1991). According to this
structure the comultiplication A, and the co-unit £, are defined by the formulae

AA( tmn) = kgl tmk ® tkn

A(det;') =det;' ®det’

E.A_(t!j)=6gj e,._(det;.')=].
The antipode S, is uniquely determined by the relations
Sa(ty}=(—q) 7 a; det;’ Sa(det,) =det;".
Here a;; is the corresponding g-minor
a.= ¥V (=% .t
71 e A J1. S0y In—1s 3Un—1}
5€8,_

where (j,,...,Jn_1) is the set (1,2,...,n) without j and (i,..., {,—;) is the set
(1,2,...,n) without i.

The algebra generated by the elements t;,, 1<i, j=n, det;', obeying relations
(23)-(26), with the structure of a Hopf algebra described is denoted by A(GL,(n, C))
and is called the algebra of functions on the quantum group GL,(n, C). The matrix
elements thy from formulae (21) and (22) belong to this algebra. The structure of a
+-Hopf algebra can be defined in A= A(GL,(n, C)). We put

5= 8(4;)=(—q) a; det]’ det} =det]’ (27)
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and extend this *-operation onto all elements of A considering that * is an antilinear
antiautomorphism, that is

(aa+ Bb)* = dga*+ Bb* a,BeC abeA
(ab)* = b*a* abe A,

The Hopf algebra A with this *-operation is called the algebra of functions on the
guantum group U,(n) and is denoted by A(U,(n)).

A matrix (t3~), described above, with a fixed highest weight m=(m,,..., Ma,)
is called a corepresentation of the Hopf algebra A(GL,(n, C)} and of the *-Hopf
algebra A(U,{n)). It is also called a representation (or a matrix representation) of the
quantum group GL,(n, C) and of the quantum group U, (n). The detailed description
of these representations can be found in Noumi et af {1990).

There is an invariant linear functional (invariant integral) ¢ on A(U,(n)) which
is defined by the relations (Noumi et al 1990)

[(id®¢)oAal(a) =1 ¢(a)

[(¢®id)JcAs](a) = ¢(a) I ac A{U,(n})
where [ is the unit element from A and id is the identity operator on A. It is uniquely
determined by the condition

elt)=e(I)=1 e{thn)=0 forall m#(0,...,0).

Using the invariant integral ¢ the scalar product (a, ) = ¢(ab*) is defined in
A(U,(n)). It is proved (Noumi et al 1990) that for matrix elements {3,y [which are
elements of the algebra A(U,(n))] we have

@ (N, 1) =0 if (m, M, N)=(m', P, Q) (28)
¢ (Eins than) = (d (m))~'q 72 M = e(m, N) (29)

where w(N) is the weight of the vector labelled by the Gel'fand-Tsetlin pattern N,
d(m) is the g-dimension of the representation T(m), that is

di(m)= Z qZ(p.w(M))
M
[the sum is over all Gel'fand-Tsetlin patterns M of the representation T(m}] and

2= 3% (n+1=2k)e,.
k=

1

4. Wigner-Eckart theorem for the quanium group U,{i)
Let T=3,,@® T(m) be a representation of the quantum group U (n) which is a direct
sum of irreducible matrix representations of U,(n). For the sake of simplicity we
suppose that multiplicities of representations T(m) in T do not exeed 1. Let R,,,
M € ) [where (] is the set of Gel’fand-Tsetlin patterns for the representation T(m'}],
be a set of operators (numerical matrices) of the dimension equal to that of the
representation T. We say that R ={R,,, M € (1} is a tensor operator transforming under
the representation T(m’) = (tfjn) of the quantum group Ug(n) if the relations
TRyT*= ¥ t%uRy (30)

Nel
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are fulfilled for all M <) where the equality is understood as element-wise equality
of matrices and T* =X, @ T#(m) means the matrix which is the direct sum of matrices
T*(m)=(tpg)* = (t35). Here the *-operation is given by formula (27).
The equality T*(m)T{m)}=E is valid, where E is the unit matrix with the units f
of the algebra A(U,(n)) on the main diagonal. Hence, formula {30) can be written as
TRy = ¥ thmRNT.

Nef)

Writing down the basis elements |M) of the carrier space of the representation T(m)
in the form |m, M) we can represent this formula as

T tho(m QRylm", D)= T T t%ulm, PIRy|m", E)Tp. (31)

Qe Nefl E<l,,-

This equality has to be understood as an equality in the algebra A(U,(n)).
By means of relations (28) and (29) we obtain from (31) that

C(m, Q)(ms QlRMlmﬂs D>= Z E (m’ PlRNlm": E)(‘?I;Wt'g;a IF"Q)

Nefl Ec)y,~

1t follows from (21) that
(1%m1ED, 1) = c(m, Q) T CRE"Cubar -

Therefore,

(m, Q|Ry|m", Dy=3. {(m, P|Ry|m", EYCTgn" Chiler -
nNE

As in the classical case, we obtain from here that

(m, Q|Ru|m", D)=¥ (m| R|Im",CTBq, (32)

where (m||R||m"), are the reduced matrix elements which do not depend on Q, M, D.
The reduced matrix elements are expressed in terms of the matrix elements from the
left-hand side of (32). Namely, due to orthogonality relation (19) we have

(m|R|m", = (dim T(m))” . {m, Q|Ru|m", D)CHBS (33)

where dim T{m) is the usual dimension of the representation T(m}. The formulae
(32) and (33) are the Wigner-Eckart theorem for the quantum group U,(n) or for the
Hopf algebra of functions on U,(n).

It follows from formula (32) that {m, Q|Rx¢|m", D) may be non-vanishing only if
for all k (1<=k=<n) we have

k k k
T myt ) di=Y ga (34)
i=1 i=1 i=1 .

where m;,, dy, gi are the entries of the Gel’fand-Tsetlin patterns M, D, Q. Namely,

m'm'm

for this case the Clebsch-Gordan coefficients Chypo, may be non-vanishing,.

5. The Wigner-Eckart theorem for the quantum algebra U, (u(n))

The quantum algebra U,(gl(n, C}) is dual to the Hopf algebra A= A(GL,(n, C)). The
elements ¢° e, fi of U,(gl(n, C)) are considered as the linear functionals on A which
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act upon #; and det;’ according to the formulae

qn(rﬁ) —= Bijq(a,ei) qn(det;) — qr(a,el+,..+en) re Z
e t;) = 8udj i Sulty) =8 p1 By
ex(det]) = fi(dety) =0 reZ

The action of g° e, f, upon other elements of A (that is upon polynomials in #; and
det') are defined with the help of the formula

X(ab)=(AXNa®b) X e U,(gl(n, C)) a,beA.
Therefore, for a, be A we have

g“(ab)=q"(a)q"(b) (35)

e(ab) = e (a)g~" %2 (b) + g% (a) e (b) (36)

filab) = fila)g™ ™ 2(b) + g™ 2 a) £i(B). (37)

Products of elements g%, e, fi of U,(gl(n, C)) in this approach are defined with the
help of formula

X Xz(a) =(X,®X;)(Aqa) Xy, Xy Uy(gl(n, C)) acA
where A, is the comultiplication in A. In particular,

(X, X5)(t7an) =§, Xi(th )Xot ).

It can be shown (Noumi et al 1990) that the elements q°, e, fi, just defined, satisfy
relations (1}-(7}). The matrices of operators of the representation T, = T{(m) of the
algebra U, (gl(n, C)) in the basis {{M)} are obtained in the following way. If X e
U, (gl(n, C}), then the matrix element T,,(X)an = (M|T,(X)|N) is evaluated by the
formula

T X ) v = X (t31n)
where (r3;y) is the corresponding trreducible corepresentation of the Hopf algebra
A(GL,(n, C)). In particular, it follows from (36) that
e thantis) = Tnladmnig ol ;"*')"l)Rs".'(qT'"(;“i * ) N T ) Rs (3%)

The similar formulae for f; and ¢° can be obtained from formulae (35) and (37).
Applying formula (38) to both sides of relation (31) we have

¥ Epo{m, Q|Ry|m", D)
Q<
= ZE Eriz'M('", P|Ry|m", E)asoq_uﬂ“"NZE qﬁ'IZ‘sNM<m, P{Ry|m", E)EE;J
N, A

where E5y= T..(e:)pg and

k+1 k—

1 K
a == E di,k+1— Z dj,k—|+2 E dy
i=1 j=1

s=1

k+1 k-1 k
B=-1% M1~ ) mj,k—l+2 T my
i =1 =1

i=1 5=
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(d, and m;,, are the entries of the Gel-fand-Tsetlin patterns D and M respectively).
This formula can be written as

% ETn{m, P|Ry|m", D)
=§ Efo(m, Q|Ryim", D)q** =% q*#¥m, P|Ry|m", EYET;,. (39)
E

Due to formula (14), EZ, =0 if, for entries of the Gel'fand-Tsetlin patterns E and
D, we have

K K
Toep— X dy# 1
iz iz1

Taking into account this formula and relation (34) we can write (39) in the operator form

ERpg ™ Hied/? — gg UMD 2R UE, =% (E) W Ry (40)
N

where E, = T(e,), H.= T(e;) and the matrix elements (E;) 7y, of the operator E}"
are determined by formula (14), that is

Z(Ek wm R = Z A (M)R(M;.
_i' i
Here for simplicity we used the notation R(N)= R,,.
Replacing e, by f. and repeating the above reasonings we obtain

FiRpg "~ g7l g e 2R = z A(ML)R(ML (41)
j=

For the operators H, we have
k k—
HkRM - RMHk = ( Z My — Z mj,k_l)RM. (42)
i=1 =1

Thus, we now can define tensor operators transforming under an irreducible representa-
tion T,, of the quantum algebra U {u(n)) or of the quantum algebra U,(gl(n, C)) as
a sei of operaiors Ry, M & {3, for which reiations (40), (41) for k=1,2,...,n—1 and
relations (42) for k=1, 2, ..., n are fulfilled. According to main theorem of the paper
by Biedenharn and Tarlini (1990) the left-hand sides of these relations give the action
of the generators of the algebra U,(gl(n, C)) upon R, M €}, compatible with
comultiplication A in this algebra. We have obtained formulae (40)-(42} from the

results of section 4, that is, the tensor operator defined by these formulae coincides
with that of section 4, Therefore. relations (32) and (33) are valid for tensor aperators

ELAL TAATAY W O WAL T A MIVI IV Ty awalel WS WLy R S0y Ga VAL ciialial aria

defined by formulae (40)-(42). These relations give the Wigner-Eckart theorem for
tensor operators from this section.

6. Conclusion

Tensor operators transforming under finite dimensional irreducible representations of
the quantum group U,(n) are of great importance for a number of applications. In
particular, as in the case of the classical unitary group U(n), they can be used for
development of the theory of Clebsch-Gordan coefficients of U,(n). We have proved
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the Wigner-Eckart theorem for these tensor operators. Then using duality between the
algebra of functions A(U,(n)) on the quantum group U,(n) and the g-deformed
universal enveloping algebra U,(u(n)) we derive formulae defining tensor operators
transforming under representations of U,(u({n)) and obtain the Wigner-Eckart theorem
for them. In forthcoming papers these tensor operators will be used for derivation of
formulae for some Clebsch-Gordan coeflicients of the quantum group U, (n).
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